Compact Weighted Class Association Rule Mining using Information Gain
نویسندگان
چکیده
Weighted association rule mining reflects semantic significance of item by considering its weight. Classification constructs the classifier and predicts the new data instance. This paper proposes compact weighted class association rule mining method, which applies weighted association rule mining in the classification and constructs an efficient weighted associative classifier. This proposed associative classification algorithm chooses one non class informative attribute from dataset and all the weighted class association rules are generated based on that attribute. The weight of the item is considered as one of the parameter in generating the weighted class association rules. This proposed algorithm calculates the weight using the HITS model. Experimental results show that the proposed system generates less number of high quality rules which improves the classification accuracy.
منابع مشابه
An Information Gain based Fuzzy Classifier for Predictive Analysis in Colon Cancer Data
Modern medicine generates a great deal of information stored in the medical database. Extracting useful knowledge and providing scientific decision making for the diagnosis and treatment of disease from the database increasingly becomes necessary. In India most of the people suffering cancer diseases. Using association rule mining for constructing classification system for diagnosing cancer dis...
متن کاملAssociation rule mining application to diagnose smart power distribution system outage root cause
Smart grid has been introduced to address power distribution system challenges. In conventional power distribution systems, when a power outage happens, the maintenance team tries to find the outage cause and mitigate it. After this, some information is documented in a dataset called the outage dataset. If the team can estimate the outage cause before searching for it, the restoration time will...
متن کاملMining utility-oriented association rules: An efficient approach based on profit and quantity
Association rule mining has been an area of active research in the field of knowledge discovery and numerous algorithms have been developed to this end. Of late, data mining researchers have improved upon the quality of association rule mining for business development by incorporating the influential factors like value (utility), quantity of items sold (weight) and more, for the mining of assoc...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملA Novel Rule Ordering Approach in Classification Association Rule Mining
A Classification Association Rule (CAR), a common type of mined knowledge in Data Mining, describes an implicative co-occurring relationship between a set of binary-valued data-attributes (items) and a pre-defined class, expressed in the form of an “antecedent ⇒ consequent-class” rule. Classification Association Rule Mining (CARM) is a recent Classification Rule Mining (CRM) approach that build...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1112.2137 شماره
صفحات -
تاریخ انتشار 2011